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1 Introduction

Multi-center BPS black-hole solutions in four dimensions, and their five-dimensional coun-

terparts, [1–6] have played a crucial role in several ares of research aimed at understanding

the quantum structure of black holes in string theory. These areas include the relation

between five-dimensional black rings and four-dimensional black holes [7], the “proof” and

“disproof” [8] of the OSV conjecture [9], the construction of smooth horizonless solutions

that describe black-hole microstates in the same regime of parameters where the classi-

cal black hole exist [10, 11], the construction of entropy enigmas [8], the calculation of

index-jumps when crossing walls of marginal stability [12], and the realization that quan-

tum effects can wipe away a macroscopic region of a smooth horizonless low-curvature

solution [11, 13].

Given the large amount of knowledge about BPS black holes that has been obtained

by studying multi-center solutions, it is natural to ask whether these solutions can be

generalized to non-BPS black holes. This problem appears, a priori, rather hopeless, given

that one is looking for four- or five-dimensional non-supersymmetric solutions of Einstein’s

equations that depend on at least two variables, and that these equations generically do not

“factorize” into first-order equation (as they do for BPS systems [14, 15]). Indeed, most

of the known solutions have been constructed in an “artisanal” fashion, and are either

essentially two-centered [16] or have no E ×B interactions between the centers [17].1

1Hence, these configurations are more similar in spirit to Majumdar-Papapetrou multi-center solutions

than to the ones of [1]
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The best target for a systematic construction of multi-center, non-BPS black holes are

extremal solutions. Indeed, for single-center configurations the equations underlying these

solutions have been shown to factorize [18, 19]. Furthermore, Goldstein and Katmadas have

observed [20] that one can construct a specific class of “almost-BPS” solutions by solving

the same linear system of equations as for BPS solutions but on a four-dimensional base

space of reverse orientation. This observation has led to the explicit construction, in [21], of

the seed solution for the most general rotating extremal black hole in N = 8 supergravity

in four dimension, and of a solution describing a non-BPS black ring in Taub-NUT. This

latter solution descends into four dimensions as a two-centered solution in which one of the

centers is a rotating D6-D2 black hole, and the other center is a D4-D2-D0 black hole.

Our purpose in this paper is to extend this construction and build non-BPS solutions

that contain a black hole and an arbitrary number of concentric black rings in Taub-NUT.

As in [21], these solutions have a non-trivial four-dimensional angular momentum that

comes both from the rotation of the black hole and from the E × B interactions between

the black-hole and the black-ring centers, and between black-ring and black-ring centers.

Hence, for generic charges our solution can be described in terms of a quiver that has

arrows running between every pair of points.

Just as for BPS multi-center solutions, the locations of the centers are not arbitrary:

the absence of closed time-like curves and of Dirac strings imposes certain “bubble” or “in-

tegrability” equations that these locations must satisfy. However, unlike the BPS bubble

equations, that are linear in the inverse of the inter-center distances, the non-BPS bub-

ble equations have denominators that are cubic polynomials in the inter-center distances.

Moreover, both the two-centered and the multi-centered solutions have walls of marginal

stability in the moduli space, across which the solutions can disappear.

Another important aspect of the non-BPS bubble equations is that they admit scaling

solutions. Furthermore, when one of the scaling centers is the rotating black hole at the

center of Taub-NUT, the total four-dimensional angular momentum of the scaling centers

can remain large throughout the scaling! The throat of the non-BPS scaling solutions then

asymptotes to the (intrinsically non-BPS) throat of a rotating four-dimensional black hole.

This makes our scaling solutions more general than the BPS ones (whose four-dimensional

angular momentum always goes to zero in the scaling limit).

Interestingly enough, in the scaling regime, the non-BPS bubble equations equations

become identical to the BPS bubble equations. For scaling solutions with vanishing four-

dimensional angular momentum, this is to be expected: Indeed, as observed in [20, 21],

when the Taub-NUT base space degenerates to R
4 or R

3 × S1, the almost-BPS solutions

become identical to the BPS ones.2 When the centers are very close to each other, the

harmonic function that determines the Taub-NUT base can be approximated either by

1/r or by a constant (depending on whether the Taub-NUT center is included in the

scaling solution or not). Hence, as the centers scale they see a base space that resembles

with increasing accuracy the base of a BPS scaling solution, and the non-BPS bubble

2This fact was used extensively in [21] and will also be used here to obtain solutions to the almost-BPS

equations by recycling pieces of the BPS solution.
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equations asymptote to the BPS bubble equations. Putting it another way, the throat

of a non-BPS, non-rotating scaling solution in which the Taub-NUT center participates

increasingly resembles the throat a D2-D2-D2-D6 extremal non-BPS single-center black

hole, which is the same as the throat of its D2-D2-D2-D6 BPS cousin [22]. However,

it is rather mysterious why, in the presence of four-dimensional angular momentum, the

scaling limit of the non-BPS bubble equations is still the same as that of the BPS ones, or,

equivalently, why the addition of four-dimensional angular momentum to the black hole

center does not affect the non-BPS bubble equations.

In section 2 we find the metric warp factors, the electric and magnetic field strengths,

as well as the angular momentum vector of our multi-center solutions. In section 3 we study

the regularity conditions imposed by the absence of closed time-like curves (CTC’s), and

find the “bubble” or “integrability” equations that the positions of the centers must satisfy.

We also study regularity at the black-hole and black-ring horizons, and relate the charges

that appear in the supergravity solution to quantized charges. We conclude this section

by investigating scaling solutions. We present conclusions and potential future directions

of research in section 4.

2 Multi-center non-BPS solutions in Taub-NUT

2.1 The Ansatz and the almost-BPS equations

As observed in [20, 21], both BPS and almost BPS solutions of eleven-dimensional super-

gravity carrying M2 and M5 charges are of the form:

ds2=−(Z1Z2Z3)
−2/3(dt + k)2 + (Z1Z2Z3)

1/3ds24

+

(

Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +

(

Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +

(

Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6) (2.1)

C(3)=

(

a1− dt+k

Z1

)

∧dx1∧dx2+

(

a2− dt+k

Z2

)

∧dx3∧dx4+

(

a3− dt+k

Z3

)

∧dx5∧dx6 , (2.2)

where ds24 is a hyper-Kähler, four-dimensional metric whose curvature we take to be self-

dual.

The almost-BPS solutions are given by:

Θ(I) = − ∗4 Θ(I) (2.3)

d ∗4 dZI =
CIJK

2
Θ(I) ∧ Θ(I) (2.4)

dk − ∗4dk = ZIΘ
(I) , (2.5)

where ∗4 is the Hodge duality operator for the metric ds24, and the anti-self-dual dipole field

strengths are defined as Θ(I) ≡ daI . Note that if one considers these equations on a hyper-

Kähler base with an anti-self-dual curvature, they describe BPS solutions. Supersymmetry

is broken only because the curvature of the base and the two-form dipole field strengths

have opposite orientations.
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2.2 Solutions with a Taub-NUT base

Our purpose is to construct multi-center solutions with a Taub-NUT base:

ds24 = V −1(dψ +A) + V ds23 (2.6)

with

V = h+
q

r
, A = q cos θdφ , ds23 = dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.7)

Let ai, i = 1, . . . , N denote a succession of points along the z axis in R
3, distinct from the

Taub-NUT origin (ai 6= 0). In the R
3 base of the Taub-NUT space, the distance from a

given point (r, θ, φ) to any one of these points is

Σi =
√

r2 + a2
i − 2rai cos θ , (2.8)

and the polar angle of that point with respect to the point i is

cos θi =
r cos θ − ai

Σi
. (2.9)

As shown in [20, 21], the M5 (magnetic) charges are determined by harmonic functions

K(I), and we assume that they have generic poles at the points ai
3

K(I) =
N

∑

i=1

d
(I)
i

Σi
. (2.10)

The harmonic functions LI associated with the M2 (electric) charges can have poles both

at the points, ai, and at the Taub-NUT center:

LI = ℓI +
Q

(I)
0

r
+

∑

i

Q
(I)
i

Σi
= ℓI +

N
∑

i=0

Q
(I)
i

Σi
, (2.11)

where Σ0 ≡ r. A solution of the almost-BPS equations (2.3), (2.4) and (2.5) can now be

constructed from these harmonic functions.

2.3 Dipole field strengths

The two-form field strengths, Θ(I), are closed and anti-self dual in the Taub-NUT space

and have the form:

Θ(I) = d[K(I)(dψ +A) + b(I)] , (2.12)

where K(I) is given in (2.10) and b(I) is given by

∗3 db
(I) =V dK(I)−K(I)dV ⇒ b(I) =

∑

i

d
(I)
i

Σi

(

h(r cos θ−ai)+q
r − ai cos θ

ai

)

dφ . (2.13)

3Allowing K(I) to have poles at r = 0 appears to lead to singular solutions.
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2.4 Warp factors

The warp factors, ZI , which encode the M2 charges, are determined by (2.4), and for the

dipole field strengths in (2.12) this equation becomes:

�3ZI = V
|ǫIJK |

2
�3(K

(J)K(K)) =

(

h+
q

r

)

∑

j,k

|ǫIJK |
2

�3

(

d
(J)
j d

(K)
k

ΣjΣk

)

, (2.14)

where sums over repeated J,K indices are implicit (as they will be throughout this paper).

It is completely trivial to solve this equation for the terms proportional to h and for the

term proportional to q we use the identity:

�3

[

r

aiaj

1

ΣiΣj

]

=
1

r
�3

[

1

ΣiΣj

]

. (2.15)

If one also includes the freedom to add to ZI a generic harmonic function, LI , given

in (2.11), the complete solution for ZI is

ZI = = LI +
|ǫIJK |

2

∑

j,k

(

h+
qr

ajak

)

d
(J)
j d

(K)
k

ΣjΣk
. (2.16)

2.5 The angular momentum one-form

The angular momentum one-form, k, can be decomposed as

k = µ(dψ +A) + ω , (2.17)

where ω is a one-form on R
3. Equation (2.5) then becomes:4

d(V µ) + ∗3dω = V ZIdK
(I)

= V
∑

i

ℓId
(I)
i d

1

Σi
+

(

h+
q

r

)

∑

i,i′

Q
(I)
i d

(I)
i′

1

Σi
d

1

Σi′

+
|ǫIJK |

2

∑

i,j,k

d
(I)
i d

(J)
j d

(K)
k

[

h2 +
q2

ajak
+ hq

(

1

r
+

r

ajak

)]

1

ΣjΣk
d

1

Σi
.(2.18)

It is convenient to rewrite the term cubic in d
(I)
i as

|ǫIJK |
2

∑

i,j,k

d
(I)
i d

(J)
j d

(K)
k

[

h2 +
q2

ajak
+ hq

(

1

r
+

r

ajak

)]

1

ΣjΣk
d

1

Σi

=
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2 T

(1)
ijk + q2 T

(2)
ijk + hq T

(3)
ijk ) , (2.19)

where

T
(1)
ijk ≡ 1

ΣjΣk
d

1

Σi
+

1

ΣiΣk
d

1

Σj
+

1

ΣiΣj
d

1

Σk

T
(2)
ijk ≡ 1

ajak

1

ΣjΣk
d

1

Σi
+

1

aiak

1

ΣiΣk
d

1

Σj
+

1

aiaj

1

ΣiΣj
d

1

Σk

T
(3)
ijk ≡

(

1

r
+

r

ajak

)

1

ΣjΣk
d

1

Σi
+

(

1

r
+

r

aiak

)

1

ΣiΣk
d

1

Σj
+

(

1

r
+

r

aiaj

)

1

ΣiΣj
d

1

Σk
, (2.20)

4All sums over i, i′, j, k are from 0 to N , with the convention that d
(I)
0 = 0.
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with ai, aj , ak any three, possibly coincident, non-vanishing points. Note that in (2.20)

we have explicitly symmetrized over the three source points and so there is an associated

factor of 1/3 but this is canceled in (2.19) by the explicit replacement of 1
2 |ǫIJK |.

One can thus reduce the complete solution for µ and ω to the solution of the follow-

ing equations:

d(V µ
(1)
i ) + ∗3dω

(1)
i = V d

1

Σi

d(V µ
(2)
i ) + ∗3dω

(2)
i =

1

Σi
d

1

Σi
(i 6 = 0)

d(V µ
(3)
ij ) + ∗3dω

(3)
ij =

1

Σi
d

1

Σj
(i 6 = j)

d(V µ
(4)
i ) + ∗3dω

(4)
i =

1

rΣi
d

1

Σi
(i 6 = 0)

d(V µ
(5)
ij ) + ∗3dω

(5)
ij =

1

rΣi
d

1

Σj
(i 6= j, j 6 = 0)

d(V µ
(6)
ijk) + ∗3dω

(6)
ijk = T

(1)
ijk (i, j, k 6 = 0)

d(V µ
(7)
ijk) + ∗3dω

(7)
ijk = T

(2)
ijk (i, j, k 6 = 0)

d(V µ
(8)
ijk) + ∗3dω

(8)
ijk = T

(3)
ijk (i, j, k 6 = 0) . (2.21)

A solution to this is:

V µ
(1)
i =

V

2Σi
, ω

(1)
i =

h

2

r cos θ − ai

Σi
dφ+

q

2

r − ai cos θ

aiΣi
dφ

V µ
(2)
i =

1

2Σ2
i

, ω
(2)
i = 0

V µ
(3)
ij =

1

2

1

ΣiΣj
ω

(3)
ij =

r2 + aiaj − (ai + aj)r cos θ

2(aj − ai)ΣiΣj
dφ

V µ
(4)
i =

cos θ

2aiΣ
2
i

, ω
(4)
i =

r sin2 θ

2aiΣ
2
i

dφ

V µ
(5)
ij =

r2 + aiaj − 2ajr cos θ

2aj(ai − aj)rΣiΣj
, ω

(5)
ij =

r(ai + aj cos 2θ) − (r2 + aiaj) cos θ

2aj(ai − aj)ΣiΣj
dφ

V µ
(6)
ijk =

1

ΣiΣjΣk
, ω

(6)
ijk = 0

V µ
(7)
ijk =

r cos θ

aiajakΣiΣjΣk
, ω

(7)
ijk =

r2 sin2 θ

aiajakΣiΣjΣk
dφ

V µ
(8)
ijk =

r2(ai + aj + ak) + aiajak

2aiajakrΣiΣjΣk

ω
(8)
ijk =

r3 + r(aiaj + aiak + ajak) − (r2(ai + aj + ak) + aiajak) cos θ

2aiajakΣiΣjΣk
dφ . (2.22)

One can also add to k a solution of the homogeneous equation dk − ∗4dk = 0, and we

consider a such solution with components:

V µ(9) = M , ∗3dω
(9) = −dM , (2.23)

– 6 –
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where M is a harmonic function that generically can be of the form:

M = m+

N
∑

i=0

mi

Σi
+

N
∑

i=0

αi
cos θi

Σ2
i

. (2.24)

Note that we have allowed for the possibility of dipole harmonic functions in M because

we know, from the two-center solution [21], that these are necessary to obtain a rotating

black hole at the Taub-NUT center. The corresponding ω(9) is:

ω(9) = κdφ −
N

∑

i=0

mi cos θidφ+

N
∑

i=0

αi
r2 sin2 θ

Σ3
i

dφ . (2.25)

The complete expression for µ and ω is then

µ =
∑

i

ℓId
(I)
i µ

(1)
i +

∑

i

Q
(I)
i d

(I)
i (hµ

(2)
i + qµ

(4)
i ) +

∑

i6=i′

Q
(I)
i d

(I)
i′ (hµ

(3)
ii′ + qµ

(5)
ii′ )

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2µ

(6)
ijk + q2µ

(7)
ijk + hqµ

(8)
ijk) + µ(9) (2.26)

ω =
∑

i

ℓId
(I)
i ω

(1)
i +

∑

i

Q
(I)
i d

(I)
i (hω

(2)
i + qω

(4)
i ) +

∑

i6=i′

Q
(I)
i d

(I)
i′ (hω

(3)
ii′ + qω

(5)
ii′ )

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2ω

(6)
ijk + q2ω

(7)
ijk + hqω

(8)
ijk) + ω(9) , (2.27)

or, more explicitly,

µ =
∑

i

ℓId
(I)
i

2Σi
+

∑

i

Q
(I)
i d

(I)
i

2V Σ2
i

(

h+
q cos θ

ai

)

+
∑

i6=i′

Q
(I)
i d

(I)
i′

2V ΣiΣi′

(

h+ q
r2 + aiai′ − 2ai′r cos θ

ai′(ai − ai′)

)

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

V ΣiΣJΣk

(

h2 + q2
r cos θ

aiajak
+ hq

r2(ai + aj + ak) + aiajak

2aiajakr

)

+
M

V
, (2.28)

ω =
∑

i

ℓId
(I)
i

2Σi

(

h(r cos θ − ai) + q
r − ai cos θ

ai

)

dφ+
∑

i

Q
(I)
i d

(I)
i

qr sin2 θ

2aiΣ2
i

dφ

+
∑

i6=i′

Q
(I)
i d

(I)
i′

2(ai′ − ai)ΣiΣi′

(

h(r2 + aiai′ − (ai + ai′)r cos θ)

−q r(ai + ai′ cos 2θ) − (r2 + aiai′) cos θ

ai′

)

dφ

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

aiajakΣiΣJΣk

(

q2r2 sin2 θ

+hq
r3+r(aiaj +aiak+ajak)−(r2(ai+aj +ak)+aiajak) cos θ

2

)

dφ

+κdφ−
N

∑

i=0

mi cos θidφ+
N

∑

i=0

αi
r2 sin2 θ

Σ3
i

dφ . (2.29)
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3 Regularity

The solutions constructed above satisfy the equations of motion, but are not necessarily

regular. Indeed, the angular momentum one-form ω is proportional to dφ, and can have

Dirac-Misner string singularities, and these would lead to closed time-like curves (CTC’s).

One must therefore require ω to vanish on the z-axis (where the φ coordinate degenerates).

Furthermore, near the poles of the harmonic functions the warp factor and rotation one-

form blow up, and this can also lead to CTC’s. We now find the conditions that guarantee

the absence of CTC’s in these two obvious places.

The conditions we will obtain are necessary but not sufficient; to be absolutely sure

of regularity and absence of CTC’s one must usually check each solution globally and in

practice this is usually done individually and numerically. Nevertheless, in our experience

(and that of others [23]), when the charges and dipole charges of the rings have the same

signs, and there are no Dirac-Misner strings or CTC’s at the horizons, the multi-center

black ring solution is regular.

3.1 Removing closed time-like curves

We require ωφ to vanish for θ = 0 or π. Looking at the various terms contributing to ω we

see that only ω(1), ω(3), ω(5), ω(8) and ω(9) are non-vanishing on the z-axis. Their values are:

ω
(1)
i =

s
(−)
i

2

(

h+
q

ai

)

dφ , ω
(3)
ij =

s
(−)
i s

(−)
j

2(aj − ai)
dφ , ω

(5)
ij =

s
(−)
i s

(−)
j

2aj(aj − ai)
dφ ,

ω
(8)
ijk =

s
(−)
i s

(−)
j s

(−)
k

2aiajak
dφ , ω(9) =

(

κ−m0 −
∑

i6=0

s
(−)
i

)

dφ , (3.1)

at θ = 0, while for θ = π one has:

ω
(1)
i =

s
(+)
i

2

(

−h+
q

ai

)

dφ , ω
(3)
ij =

s
(+)
i s

(+)
j

2(aj − ai)
dφ , ω

(5)
ij = −

s
(+)
i s

(+)
j

2aj(aj − ai)
dφ ,

ω
(8)
ijk =

s
(+)
i s

(+)
j s

(+)
k

2aiajak
dφ , ω(9) =

(

κ+m0 +
∑

i6=0

s
(+)
i

)

dφ , (3.2)

where we have defined

s±i ≡ sign(r ± ai) . (3.3)

Hence the absence of Dirac-Misner strings imposes the constraints

∑

i

ℓId
(I)
i

s
(−)
i

2

(

h+
q

ai

)

+
∑

i6=i′

Q
(I)
i d

(I)
i′

s
(−)
i s

(−)
i′

2(ai′ − ai)

(

h+
q

ai′

)

+

+hq
∑

ijk

d
(1)
i d

(2)
j d

(3)
k

s
(−)
i s

(−)
j s

(−)
k

2aiajak
+ κ−m0 −

∑

i6=0

s
(−)
i mi = 0 , (3.4)
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−
∑

i

ℓId
(I)
i

s
(+)
i

2

(

h− q

ai

)

+
∑

i6=i′

Q
(I)
i d

(I)
i′

s
(+)
i s

(+)
i′

2(ai′ − ai)

(

h− q

ai′

)

+

+hq
∑

ijk

d
(1)
i d

(2)
j d

(3)
k

s
(+)
i s

(+)
j s

(+)
k

2aiajak
+ κ+m0 +

∑

i6=0

s
(+)
i mi = 0 . (3.5)

Note that, taking into account the possible values of the signs s
(±)
i , the conditions

above imply N + 2 independent constraints. One can make these constraints explicit, for

example, by solving them with respect to the N+2 variables κ, m0 and mi for i = 1, . . . , N .

If one considers, for definiteness, a configuration in which all the poles ai lie to the right

of the Taub-NUT center (0 < a1 < . . . < aN ), then the regularity constraints are:

κ = −q
∑

i

ℓId
(I)
i

2ai
− h

∑

i6=i′

Q
(I)
i d

(I)
i′

2(ai′ − ai)
− hq

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
, (3.6)

m0 = −q
∑

i

ℓId
(I)
i

2ai
− h

∑

i

Q
(I)
0 d

(I)
i

2ai
+ q

∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2ai′(ai′ − ai)
− hq

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
, (3.7)

mi =
ℓId

(I)
i

2

(

h+
q

ai

)

+
∑

j

1

2|ai − aj |

[

Q
(I)
j d

(I)
i

(

h+
q

ai

)

−Q
(I)
i d

(I)
j

(

h+
q

aj

)

]

+
hq

2

[

d
(1)
i d

(2)
i d

(3)
i

a3
i

+
|ǫIJK |

2

d
(I)
i

ai

∑

j,k

sign(aj − ai)sign(ak − ai)
d
(J)
j d

(K)
k

ajak

]

(i ≥ 1) ,(3.8)

where we have used the convention sign(0) = 0.

When there is no black hole and no rotation at the center of Taub-NUT (Q
(I)
0 = 0

and α0 = 0), the metric around r = 0 is expected to describe empty space, and hence be

completely regular. As both coordinates ψ and φ degenerate at r = 0, regularity requires

that µ and ω vanish. From (2.26) and (2.27) and the regularity relations (3.6), (3.7)

and (3.8), one indeed finds that µ and ω must satisfy:

µ|r=0 =
∑

i

ℓId
(I)
i

2ai
−

∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2ai′(ai′ − ai)
+ h

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
+
m0

q
= 0 ,

ω|r=0 =

[

−
∑

i

ℓId
(I)
i

2

(

h+
q cos θ

ai

)

+
∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2(ai′ − ai)

(

h+
q cos θ

ai′

)

−hq
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k cos θ

2aiajak
+ κ−m0 cos θ +

∑

i6=0

mi

]

dφ = 0 , (3.9)

which are automatically implied by (3.6), (3.7) and (3.8). Hence, these relations are enough

to guarantee the regularity of the solution at the center of Taub-NUT space.

3.2 Regularity at the horizons

It is also important to study the geometry in the vicinity of the poles Σi = 0, where, for

generic charges and not-too-large angular momenta, we expect to find regular horizons.
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For this purpose it is convenient to define

I4 = Z1Z2Z3V − µ2V 2 . (3.10)

The volume element of the horizon around Σi = 0 is

√
gH,i = Σi(I4Σ

2
i sin2 θi − ω2

φ)1/2 . (3.11)

Consider first the black hole horizon at Σ0 ≡ r = 0. The near-horizon expansion gives

I4 ≈ Q
(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0 cos2 θ

r4
, ωφ ≈ α0

sin2 θ

r
, (3.12)

and hence
√
gH,0 ≈ (Q

(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0)
1/2 sin θ . (3.13)

Thus we find a horizon of finite area5 given by:

AH,0 = (4πq)(4π)(Q
(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0)
1/2 . (3.14)

As expected, the black hole at the center is the four-charge rotating black hole constructed

in [21], and the parameter α0 encodes its four-dimensional angular momentum.

Consider now the limiting form of the metric near the ith point (around Σi = 0). After

several highly non-trivial cancelations one obtains:

I4 = −2αid
(1)
i d

(2)
i d

(3)
i

(

h+
q

ai

)2 cos θi

Σ5
i

+O(Σ−4
i ) (3.15)

and

ωφ ∼ Σ−1
i . (3.16)

This would lead to closed timelike curves outside the horizon unless the term of order Σ−5
i

in I4 vanishes, which requires:6

αi = 0 (i ≥ 1). (3.17)

When this condition is imposed, each point Σi = 0 is a black ring horizon of area

AH = 16π2qJ
1/2
4 , (3.18)

where J4 is the usual E7(7) quartic invariant that appears in the black ring horizon area [25]:

J4 =
1

2

∑

I<J

d̂
(I)
i d̂

(J)
i Q

(I)
i Q

(J)
i − 1

4

∑

I

(d̂
(I)
i )2(Q

(I)
i )2 − 2d̂

(1)
i d̂

(2)
i d̂

(3)
i m̂i . (3.19)

5As usual, area means the spatial measure of the three-dimensional horizon of the five-dimensional black

hole.
6In the two-center solution of [21] a non-zero value for αi was required for regularity at the black ring

horizon. However, the parameter αi in [21] differs from the one used here by a constant coming from the

gauge choice for µ(6), and the two results are consistent.
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In order to bring J4 to its canonical form, we have defined the “effective” dipole and angular

momentum parameters;7

d̂
(I)
i =

(

h+
q

ai

)

d
(I)
i , m̂i =

(

h+
q

ai

)−1

mi . (3.21)

Note that the result (3.18) and (3.19) coincides with the one for an isolated BPS black

ring carrying charges d̂
(I)
i , QI

i and m̂i: the area of the ith horizon is not affected by the

presence of the other horizons nor by the switch of orientation of the base space that is

characteristic of our non-BPS solutions.

If one chooses units such that the five-dimensional Newton’s constant is G5 = π
4 and

the three tori have equal sizes, the integer M2, M5 and KK momentum charges carried by

the ith center are:

n
(I)
i = − d̂

(I)
i

2
, N

(I)
i =

Q
(I)
i

4
, J

(KK)
i = −m̂i

8
. (3.22)

One can also construct solutions in which some of the centers do not have three M2

charges and three M5 charges, but only two M2 charges and one M5 charge. These solu-

tions describe now two-charge round supertubes [26], and the geometry near an individual

supertube is expected to be smooth in the duality frame in which the dipole charge of

the tube corresponds to KK-monopoles, and the electric charges correspond to D1 and D5

brane [27–29]).

For the supertube with dipole charge corresponding to, say, K3, this regularity condi-

tion is [29]:

lim
Σi→0

Σ2
i (Z3V (K(3))2 − 2µV K(3) + Z1Z2) = 0 . (3.23)

Just as for black rings, this requires that the “dipole” harmonic term inM vanish (otherwise

µV K3
i ∼ Σ−3

i ):

αi = 0 . (3.24)

Furthermore, equation (3.23) implies the usual supertube regularity condition:

2d3
imi = Q2

iQ
1
i . (3.25)

3.3 Scaling solutions

Consider the limit in which the positions of the centers are scaled to zero (ai ≪ q
h). In

this limit the regularity conditions (3.7) and (3.8), when written in terms of the quantized

7The “effective angular momentum” that appears in the J4 parameter of the non-BPS black ring in

Taub-NUT constructed in [21] is not m̂i but

m̂
BDGRW
i ≡ m̂i −

q

2a2
i

„

h +
q

ai

«

−2

Q
(I)
0 d̂

(I)
i

⇔ m
here
i = m

BDGRW
i +

q

2a2
i

Q
(I)
0 d

(I)
i

. (3.20)

We find here, instead, that J4 simply depends on m̂i. The two results are consistent because here we are

using a different (and more natural) gauge choice originating from a different definition of µ
(5)
0i

and reflected

in the equation for mhere
i .
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charge parameters d̂
(I)
i , QI

i and m̂i, reduce to:

m0 = −
∑

i

ℓI d̂
(I)
i

2
− h

q

∑

i

Q
(I)
0 d̂

(I)
i

2
+

∑

i6=i′,i6=0

Q
(I)
i d̂

(I)
i′

2(ai′ − ai)
− h

q2

∑

i,j,k

d̂
(1)
i d̂

(2)
j d̂

(3)
k

2
, (3.26)

q
m̂i

ai
=
ℓI d̂

(I)
i

2
+

∑

j

1

2|ai − aj |

[

Q
(I)
j d̂

(I)
i −Q

(I)
i d̂

(I)
j

]

+
h

2q2

[

d̂
(1)
i d̂

(2)
i d̂

(3)
i +

|ǫIJK |
2

d̂
(I)
i

∑

j,k

sign(aj−ai)sign(ak−ai)d̂
(J)
j d̂

(K)
k

]

(i ≥ 1) . (3.27)

These equations are now linear in the inverse of the inter-center distance, much as they

are for BPS solutions.

As the parameters d̂
(I)
i , QI

i and m̂i with i > 0 are associated to quantized charges, their

value is to be kept finite while the ai’s are scaled to zero. Note however that m0 does not

correspond to any quantized charge, but is a parameter needed for regularity, as indicated

by (3.6). Hence, one should think about equation (3.26) (or (3.7) in the full solution) as

determining the value of a parameter of the solution as a function of the charges and the

positions of the centers, and about equations (3.27) (or (3.27) in the full solution) as the

“bubble equations” of the system, that determine the inter-center distances as a function

of the charges and the moduli.

In the small ai limit, the non-BPS bubble equations become:

∑

j

1

2|ai − aj |

[

Q
(I)
j d̂

(I)
i −Q

(I)
i d̂

(I)
j

]

= q
m̂i

ai
, (3.28)

which coincides with the scaling limit of the BPS bubble equations.

4 Conclusions and future directions

We have constructed almost-BPS multi-center solutions that describe a black hole and an

arbitrary number of black rings in Taub-NUT. This solution descends to four dimensions to

a multi-center configurations containing one rotating D6-(D2)3 and an arbitrary number of

collinear (D4)3-(D2)3-D0 black holes. These solutions admit scaling regimes where some,

or all, of the centers get very close to each other (in R
3 coordinate distance), and the

throats of the black holes that are scaling join into a bigger throat. Furthermore, since the

bubble equations are insensitive to the four-dimensional rotation of the black hole, we can

obtain scaling solutions that have a non-zero four-dimensional angular momentum.

There are several obvious directions for future research. On a technical level, it should

be possible to generalize our results to “tilted” black rings where the centers are not co-

linear in the R
3 base. Preliminary calculations suggest that while this should in principle

be possible, it is technically quite complicated.

On a more fundamental and physical level it would be interesting to determine whether

the non-BPS bubble equations can be derived from a microscopic quiver perspective in the
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way the BPS ones were derived in [1]. Given the complicated structure of the bubble equa-

tions, and the fact that they do not depend on the four-dimensional angular momentum,

this would be quite spectacular. It would also hint at the existence of non-renormalization

theorems that apply both to BPS and to non-BPS multi-center solutions, and may allow

a moduli-space quantization of these solutions similar to that of [13].

It is also interesting to explore the lines of marginal stability in the moduli space of

the almost-BPS solutions. Note that, unlike their BPS counterparts, these solutions are

completely independent of some of the moduli: for example, Wilson lines along the Taub-

NUT fiber at infinity correspond to adding constants to theK(I) harmonic functions, which

does not affect at all the metric or the Maxwell fields.

It is equally important to try to use our multi-center almost-BPS solutions to con-

struct smooth horizonless black hole microstate geometries corresponding to microstates

of rotating non-BPS four-dimensional black holes. This is however not as straightforward

as for BPS solutions. Indeed, if one considers an almost-BPS solution with a multi-center

Gibbons-Hawking or Taub-NUT base, the flux on a two-cycle running between two centers

is anti-self-dual, and hence non-normalizable. Such solutions thus tend to be unphysical

and so such fluxes should be set to zero. If one then builds solutions with multiple D6 cen-

ters but without fluxes, these centers are always mutually local (there is no arrow between

them in the quiver description), and the solution one builds is uninteresting.

One way to proceed is to relax at first the requirement of smoothness, and to focus

rather on “primitive” centers (that correspond to fluxed D4, fluxed D2, or D0 branes, and

that preserve locally 16 supercharges). Then our solutions contain, for example, a four-

point quiver that has one D6 and three mutually-nonlocal fluxed D4 centers (which can also

be thought of as supertubes that have three different kinds of dipole charges). This quiver

has arrows running between all centers, admits scaling solutions, and can have overall

charges corresponding to a rotating black hole of macroscopic horizon area. Furthermore,

one can argue that upon a chain of dualities8 this solution can be brought to a duality

frame in which it is completely smooth, much like a fluxed D4 (also known as a supertube)

sources a smooth supergravity solution in the duality frame where the supertube has KKM

dipole charge [27–29]. We believe this route will yield rather generic smooth microstates

of non-BPS extremal black holes, and will help extend the fuzzball proposal [30] beyond

supersymmetric settings.

Last, but not least it is important to understand the other circumstances in which

Einstein’s equations can factorize and one has the hope of constructing solutions system-

atically. As we will see in a forthcoming publication [31], the almost-BPS solutions are

not the most generic non-BPS solutions that factorize, and there may exist routes to clas-

sify and find all the extremal multi-center non-BPS solutions one can build in four or

five-dimensional supergravity.

8For example three spectral flow transformations of the type explored in [24]
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